
Active Hotspot: An Issue-Oriented Model to
Monitor Software Evolution and Degradation

Qiong Feng, Yuanfang Cai
Drexel University
Philadelphia, PA

qf28, yc349@drexel.edu

Rick Kazman
University of Hawaii & SEI/CMU

Honolulu, HI

kazman@hawaii.edu

Di Cui, Ting Liu
Xi’an Jiaotong University

Xi’an, China

cuidi,tingliu@mail.xjtu.edu.cn

Hongzhou Fang
Drexel University
Philadelphia, PA

hf92@drexel.edu

Abstract—Architecture degradation has a strong negative im-
pact on software quality and can result in significant losses.
Severe software degradation does not happen overnight. Software
evolves continuously, through numerous issues, fixing bugs and
adding new features, and architecture flaws emerge quietly and
largely unnoticed until they grow in scope and significance when
the system becomes difficult to maintain. Developers are largely
unaware of these flaws or the accumulating debt as they are
focused on their immediate tasks of address individual issues. As a
consequence, the cumulative impacts of their activities, as they af-
fect the architecture, go unnoticed. To detect these problems early
and prevent them from accumulating into severe ones we propose
to monitor software evolution by tracking the interactions among
files revised to address issues. In particular, we propose and
show how we can automatically detect active hotspots, to reveal
architecture problems. We have studied hundreds of hotspots
along the evolution timelines of 21 open source projects and
showed that there exist just a few dominating active hotspots
per project at any given time. Moreover, these dominating active
hotspots persist over long time periods, and thus deserve special
attention. Compared with state-of-the-art design and code smell
detection tools we report that, using active hotspots, it is possible
to detect signs of software degradation both earlier and more
precisely.

Index Terms—software evolution, architecture debt

I. INTRODUCTION

Software degradation has a strong negative impact on

software quality and productivity, and may cause significant

financial losses, e.g. [1]–[3]. Curtis et al. [4] reported that,

on average, there is $360,000 of technical debt for every

100,000 LOC in complex software systems [5]. These severe

debts do not happen overnight. Developers evolve software

by continuously addressing issues, fixing bugs and adding

new few features, and architecture flaws emerge quietly and

largely unnoticed [6]–[8]. These problems may continuously

“evolve”—grow in scope and significance—until the system

becomes difficult to maintain. Developers are largely unaware

of the accumulating debt; they are focused on their immediate

tasks of adding features and fixing bugs. As a consequence,

the cumulative impacts of their activities, as they affect the

architecture, go unnoticed. When these problems are finally

detected, the damage is already done and the problems may be

very costly to fix. Identifying these debts early is thus crucial.

Existing tools detect technical or architectural debts [9], [10]

either from one snapshot of the software, source or compiled

(such as SonarQube [11] and Structure101 [12]), or using a

combination of code snapshots and revision history, such as

DV8 [13], [14]. Tools using snapshots only tend to report a

large number of problems. For example, SonarQube detected

94 files with major or blocker smells in Tika 0.5 out of just

194 files—nearly 50%, making it difficult for the user to select

and prioritize true debts. Tools that leverage revision histories

are more likely to identify true debts since the project history

records penalties, in terms of bugs and changes. But these tools

usually have some user-settable thresholds. In order to detect

severe problems, the thresholds are not small. For example,

one anti-pattern detected by DV8 is called Unstable Interface.

According to its default setting, a file will be detected as an

unstable interface if it has 1% of all the project’s files as

dependents and has co-changed with at least 10 of them at

least two times [14]. When this anti-pattern is detected, the

problem has already had an impact. Similarly, for all these

tools, how early and how accurate debts are detected depends

on threshold settings. For example, a class won’t be detected

as a God Class until its size or complexity reaches specified

thresholds.

In this paper, we propose a novel model, Active Hotspot
(AH), that can be used to detect and monitor the emergence

and evolution of software degradation by tracking how files

and their relations are changed within each issue, such as

adding a new feature or fixing a bug. In other words, we

use issues as first-class entities of evolution, and data sources

of our analysis [15]. Concretely, we first track and treat the

source files that are modified to address multiple issues as

seed files, calculate their architectural and semantic relations

through four propagation pattern (which will be described

in next paragraph) with other modified files, and form the

minimal number of file groups, each of which is an active
hotspot (or hotspot).

To study how changes propagate from/to seed files, we man-

ually examined a large number of relations among files mod-

ified to address various issues. We have identified 4 recurring

and repetitive patterns over many projects: 1) dissemination—

changes to one file propagate to multiple dependent files (one-

to-many); 2) concentration—changes to multiple files cause

another file to change (many-to-one); 3) domino—changes

to one file cause ripple effects to a sequence of dependent

files; and 4) scattershot—changes that scatter in multiple files

without syntactic dependencies.

986

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-7281-2508-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ASE.2019.00095

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:02:14 UTC from IEEE Xplore. Restrictions apply.

Using active hotspots, we studied the evolution of 21 large-

scale open source projects, and revealed the following results:

(1) During a period of evolution, measured as 100 issue

fixes, there always exist a few dominating hotspots, usually 2

or 3, and rarely more than 5, that attract the majority of files

that were modified to address issues.

(2) These dominating hotspots tend to be persistent and

long-lasting: of 560 dominating hotspots we found in all 21

projects, their average life time is 24.6 months. Some of

them persist through the entire life of the project. These two

observations imply that these dominating hotspots are focal

points of evolution that deserve special attention.

(3) The number of files involved in hotspots is not correlated

with the size of the project, which contrasts with most tools

whose reported problems and measures grow as the project

grows. This means that even when a project grows, the devel-

opment team won’t necessarily be overwhelmed by increasing

numbers of reported problematic files.

(4) Considering the identification of change-prone/error-

prone files as an information retrieval problem, we used active

hotspots to detect such files and revealed that, compared

with state-of-the-arts techniques, hotspots can identify change-

prone and error-prone files more precisely.

(5) Using hotspots as an architecture debt detection tool

our empirical study shows that, compared with state-of-the-

art techniques, hotspots can reveal major problems, especially

architecturally important files that are root causes of architec-

tural debt, much earlier.

This empirical study presents strong evidence that active

hotpots can be leveraged to identify true architectural debts

earlier and more effectively, so that they can be prevented

from incurring severe losses.

II. HOTSPOT DEFINITIONS

In this section, we define our core concepts.

Seed file: a file revised by multiple issues in a given time

period. The rationale is that if a file is repetitively changed by

multiple issues for different reasons then this file may have

violated the single responsibility principle [16]. The user can

set a threshold to determine the number of commits for a file

to be a seed. In the study reported in this paper we consider

files changed for issue-fixing two or more times as seed files.

Propagation file: if a file changed together with a seed file

in one of propagation patterns, which we will explain in II-A,

then we call it a propagation file. For example, suppose fa is

a seed file, and changed together with fb and fc. If fb inherits

from fa, and fc inherits from fb, we consider fb and fc as

the propagation files of fa. Moreover, in this case, we classify

these three files as following the domino propagation pattern,

one of the 4 types of propagation patterns among files.

Active Hotspot (or “Hotspot”): a set of files that were

changed together during a given time period, including a set

of seed files, Vseed, and a set of propagation files, Vprop.

Formally, a hotspot can be represented as a directed connected

graph: HotspotΔt = (V,E), in which V is the union of

seed files and propagation files, i.e., Vseed ∪ Vprop, and E

(a) Dissemination (b) Concentration (c) Domino (d) ScatterShot

Fig. 1: Change Propagation Patterns

is a set of ordered pairs of files within V , and each pair of

files has propagation pattern relations among them. There may

be multiple mutually exclusive hotspots during a given time

period.

In the study reported here we only include propagation files

through one of the four propagation patterns into a hotspot

because (1) these four patterns are widespread (as we will

show), and (2) these patterns are the atomic relations forming

higher level architecture problems.

A. Propagation Patterns

To better understand file relationships in co-commits, and

how issues propagate among these files, we manually exam-

ined 100 bug patches from multiple systems that revised five

files or more, and categorized the relations among the files

involved in each bug fix. We observed that, overwhelmingly

(96 out of 100 times), their relations follow four recurring

patterns:

(1) Dissemination (Figure 1a). Methods or fields were

modified/added/deleted from one file, and several other files

using these changed methods or fields were updated accord-

ingly. This pattern involves one file, such as a parent or

utility class, and several dependent classes. The bug patch

for JDT Bug 4270721 is such an example. The purpose

of this patch was to fix a compilation failure when the

type of a method is ambiguous. The solution is to change

the matching strategy in Type Binding. The change started

by modifying the sIsMoreSpecific method in class Expres-
sion.java, then all its subclasses ConditionalExpression.java,

LambdaExpression.java, MessageSend.java and ReferenceEx-
pression.java were changed accordingly. In this patch, Condi-
tionalExpression.java and MessageSend.java used the updated

method sIsMoreSpecific and needed to change the way the

method was called. The other two classes, LambdaExpres-
sion.java and ReferenceExpresssion.java, needed to replace

the original matching method TypeBinding.equalsEquals with

the newly updated sIsMoreSpecific. This patch represents the

Dissemination pattern where changes to one file propagate to

multiple files that depend on it.

Expression.java
public boolean sIsMoreSpecific(TypeBinding s, TypeBinding t)
{- TypeBinding expressionType = this.resolvedType;
- if (expressionType == null || !expressionType.isValidBinding())
- return false;
- if (s.isBaseType() && t.isBaseType())
- return s.isCompatibleWith(t);
- return s.findSuperTypeOriginatingFrom(t) != null;
+ return s.isCompatibleWith(t);}

1Due to the limitation of paper size, we only present patches directly related
to the pattern.

987

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:02:14 UTC from IEEE Xplore. Restrictions apply.

ConditionalExpression.java
public boolean sIsMoreSpecific(TypeBinding s, TypeBinding t) {
+ if (super.sIsMoreSpecific(s, t))

MessageSend.java
public boolean sIsMoreSpecific(TypeBinding s, TypeBinding t) {
+ if (super.sIsMoreSpecific(s, t))

LambdaExpression.java
+ if (super.sIsMoreSpecific(s, t))

ReferenceExpression.java
+ if (super.sIsMoreSpecific(s, t))

(2) Concentration (Figure 1b). This pattern describes the

case where one class changes due to changes to multiple

other classes it depends on. That is, two or more files were

modified to change/add/delete methods or fields, and another

file which depends on them has to be updated. Take JDT

Bug 404649 as an example, class IProblem.java adds an

int field SuperAccessCannotBypassDirectSuper, and another

class, ProblemReasons.java, also adds an int field Attempt-
ToBypassDirectSuper. The third class ProblemReporter.java
needs to use both of the newly added fields in its method

illegalSuperAccess. This pattern describes the cases where one

class is dependent on the changes from multiple other classes

through structural dependencies.

core/compiler/IProblem.java
+ int SuperAccessCannotBypassDirectSuper = TypeRelated + 1054;

internal/compiler/lookup/ProblemReasons.java
+ final int AttemptToBypassDirectSuper = 21;

internal/compiler/problem/ProblemReporter.java
+public void illegalSuperAccess(TypeBinding superType, TypeBinding directSuperType,

ASTNode location) {
+ if (directSuperType.problemId() != ProblemReasons.AttemptToBypassDirectSuper)
+ needImplementation(location);
+ handle(IProblem.SuperAccessCannotBypassDirectSuper ,

(3) Domino (Figure 1c). This pattern describes the case

where changes originated in one file ripple through multiple

other files, resulting in a cascade of consequent changes.

The patch for JDT Bug 490657 is such an example: Class

ProblemReasons.java was first modified by adding an int field

ServiceImplDefaultConstructorNotPublic. After that, another

class ProblemReporter.java was also changed to add a new

method invalidServiceImpl() that used the newly added field

in ProblemReasons.java. Finally, the third class, ModuleDec-
laration.java also added a new method validate() which uses

the method invalidServiceImpl() added in the second class,

ProblemReporter.java. This pattern describes the well-known

ripple effects caused by direct and indirect structural depen-

dencies.

lookup/ProblemReasons.java
+ final int ServiceImplDefaultConstructorNotPublic = 31;

problem/ProblemReporter.java
+public void invalidServiceImpl(int problem, TypeReference impl) {
+ String[] args = new

String[]{CharOperation.charToString(impl.resolvedType.readableName())};
+ case ProblemReasons.ServiceImplDefaultConstructorNotPublic:

ast/ModuleDeclaration.java
+ private void validate(TypeReference serviceInf, TypeReference serviceImpl) {
+ if (problemId != ProblemReasons.NoError) {
+ this.scope.problemReporter().invalidServiceImpl(problemId, serviceImpl);

(4) ScatterShot (Figure 1d). This pattern is similar to code

clones, where similar patch logic is injected into multiple

files. For example, JDT Bug 520795 was “Private interface
methods should not be visible outside”. The patch modified the

same method(isPrivate()) in 3 classes: MethodBinding.java,

ReferenceBinding.java and Scope.java. These 3 classes are

responsible for verification logic and shared this crosscutting

concern. If method accessibility needs to be changed in the

future, it is possible that these three classes need to be changed

together again. Files involved in the ScatterShot pattern may

or may not have structural dependencies among them, but

the methods that were changed in this pattern do not have

structural relations.

MethodBinding.java
+ if (this.declaringClass.isInterface() && isStatic() && !isPrivate()) {

ReferenceBinding.java
+ if (method == null || method.isStatic() ||

method.redeclaresPublicObjectMethod(scope) || method.isPrivate())

Scope.java
+ if (candidate.isStatic() && candidate.declaringClass.isInterface() &&

!candidate.isPrivate()) {

These results are generalizable. We created a tool to identify

these recurring patterns and analyzed 1,503 bug patches that

modified 5 files or more. This analysis showed that 97.3%

of them participated in at least one of these four patterns,

suggesting that these patterns are widespread.

Besides, these patterns are the atomic relations forming

higher level architecture problems. For instance, when multiple

disseminations with the same top file are combined, this top

file will have a large number of dependents and may be

qualified as Wide Hierarchy design smell in Designite or

Unstable Interface anti-pattern in DV8.

III. ILLUSTRATIVE EXAMPLE

Figure 2 illustrates the evolution of a hotspot, simplified

from the Apache Camel project. We split its evolution history

into 315 sliding evolution windows, each consisting of 100

issues that modify at least one source file. Each window is

20 issues apart from the next: the first evolution window, w1,

starts when the 1st issue was resolved and ends when the 100th

issue was resolved, and w2 starts at the 21st issue and ends

with the 120th issue, and so forth.

Figure 2 is labeled with 5 consecutive evolution windows.

An oval denotes an issue, and the circles within it are the

files added/deleted/modified to address the issue. A red circle

denotes a file changed by more than one issue in the evolution

window—a seed file. A yellow circle denotes a propagation

file participating in one of the 4 propagation patterns with seed
files, which we call propagation files. Other files, represented

by small, unlabeled gray circles, are modified but have no

relations with the seed files. An active hotspot (AH) consists of

all the red and yellow circles and their relations. Each hotspot
is identified by their seeds files. If two hotspots share any seed

files, we consider them as the same hotspot.

In w229, the file named DefaultCamelContext.java (f1) was

modified by two different issues, which makes it a seed file.

f1 and f2 − 5 depends on f6, CamelContext.java, and they

form a dissemination pattern. Since f2−6 is only modified by

one issue in this evolution window, they are colored yellow,

denoting that even if they are not seed files, they participated

in at least one propagation pattern, and all six files form an

active hotspot in w229.

988

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:02:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The Life Cycle of an Active Hotspot in Camel

In the next evolution window, w230, f6 became a seed file

since it was revised by two different issues, and four more

seed files were detected. As a result, these seeds files and the

propagation files expanded the hotspot to 13 files. In w231,

the hotspot still had 13 files, but f9 replaced f12 as a seed

file. In w232, f1, f6, f4, and f11 remain to be seed files but

the hotspot shrank to 9 files. In w233 and w234, the hotspot

further shrunk to 5 files.

This example is extracted from nine years of Camel’s

evolution history that consists of 6390 issues. As we can see

from the dataset, f1 appeared to be a seed file as early as

in the first evolution window, and f11 became a seed file in

w93. These two files remain to be actively leading hotspots all

through the lifecyle of Camel. In window 235, f11 remained

to be the seed of a hotspot with files. After that, this group

became less active until window 273 when f1 and f11 started

to lead a 5-file hotspot again. These files remains to be active

till the very last of the evolution history, window 315, when

the hotspot grew to 17 files.

IV. HOTSPOT DETECTION

Based on these definitions, we detect hotspots as follows:

we first extract all the seed files within any a given time period,

and then find all the files that participated with these seed files

through any of the four propagation patterns. The seed files

and all propagation files form an active hotspot. Figure 3

depicts the overall process of our approach with the following

four steps:

Step 1: Detecting seed files. This step takes issue records

and revision history records as inputs, as well as a specified

Fig. 3: Overview of our Approach

period of time, and outputs a set of seed files. Specifically we

extract issue IDs from a system’s issue tracking system and

match them with its commit history, with the assumption that

if a system is well managed, a commit should be associated

with an issue ID. We extract the source files committed to

resolve each issue, and output files that were changed for at

least two issues as a set of seed files. In this step, all test files

are filtered out as we focus our investigate only on source files.

Step 2: Extracting dissemination, concentration and domino
patterns. In a given period of time, for each commit, we

use the command git show to extract all the source files

changed by that commit, and use a reverse engineering tool

Understand [17] to extract syntactic dependencies among these

source files, such as inherit, call and use etc. This dependency

information can be used to detect dissemination, concentration

989

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:02:14 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Generate Hotspots from Seedfiles and a list

of Propagation Patterns

1 Function generateHotspot (seedfiles, pps);
Input : seedfiles and a list of propagation patterns pps

with each pattern represented by (V,E)
Output: A list of hotspots with each hotspot = (V,E)

2 Initialize fileset as a Set;
3 for each seedfile in seedfiles do
4 for each pp in pps do
5 if seedfile is one node in pp then
6 Put all nodes files in pp into fileset;
7 end
8 end
9 end

10 Put all seedfiles into fileset;
11 Change fileset to a list: filelist;
12 Initialize a UnionFind uf with the size of filelist ;

13 for each pp in pps do
14 if fileset contains any two files(f1, f2) in pp then
15 index1 ← filelist.index(f1);
16 index2 ← filelist.index(f2);
17 uf.union(index1, index2);
18 end
19 end
20 Initiate a list of hotspots with each hotspot = (V,E);
21 Populate file names in the same group in UnionFind uf

as the nodes of one hotspot into hotspots;

22 for each hotspot in hotspots do
23 for each pp in pps do
24 if pp contains a edge between any two files(f1,

f2) in hotspot then
25 Populate this edge into this hotspot;
26 end
27 end
28 end
29 return hotspots;

and domino patterns among the changed source files. For

example, if one changed file call multiple other changed files,

then a concentration pattern will be detected.

Step 3: Extracting scattershot pattern. In a given period

of time, for each commit, we use git diff to extract added,

deleted, or changed lines in each source file. After that, we

apply Simian [18] to detect similar code pieces (clones) among

the changed code entities of all source files. If any two source

files have at least one similar changed line, then we say these

two files have a clone relation and three files with a clone

relation form a scattershot pattern.

Step 4: Calculating active hotspots. Using the seed files

output from step 1 and the four pattern information from

steps 2 and 3 as inputs, this step generates a set of mutually

exclusive hotspots in both csv and json formats, so that these

hotspots can be visualized using other tools. Specifically, we

bind files participated in the same patterns with a seed file with

the seed file into a hotspot. If another hotspot is sharing one

or more same files with this hotspot, then these two hotspots

will be merged together into one single hotspot. The details are

shown in Algorithm 1. Our R-script can be used to visualize

issues’ interaction shown in Figure 2 and the detailed pattern

information can be shown in DV8.

V. EMPIRICAL STUDY

The objective of our empirical study is to understand the

nature and potential of active hotspots—file groups generated

from evolution history using issues as first-class analysis

artifacts. For this purpose, we studied the evolution history

from 21 large-scale open source projects, and their basic data

are shown in Table I. As we introduced in Section III, we split

the project’s evolution history into multiple sliding evolution
windows, each consisting of 100 issues that modify at least

one source file, and each window is 20 issues apart from

the next. We choose 100 issues as a window size as our

previous approach [19] shows that 100 issues can provide

valuable information with a reasonable size. We will discuss

this threshold in Section VI.

As shown in Table I, the number of evolution windows dif-

fers for different projects, ranging from 29 to 317, depending

on the length of the history and their activeness, i.e. the number

of issues that are resolved (We do not consider open issues

in this experiment as they are continue changing). The table

also shows that the number of hotspots detected within each

window ranges from 1 to 38. The average number of hotspots

detected within a evolution window is 17.5.

We investigate 5 research questions. The first three help us

understand active hotspots in terms of their life cycles and

sizes. The last two test the potential of using active hotspots

to detect problematic files and architecture debts, in terms of

timeliness and efficiency.

RQ1: How files are distributed among the multiple hotspots
detected within a period of time? That is, do files tend to
aggregate into a few hotspots, or are they usually randomly
distributed? If a small number of hotspots always attract a

large number of files, then these hotspots are more likely to

have architecture issues, and thus deserve special attention. We

would like to understand if such dominating hotspots exist in

most projects, and if so how many such dominating hotspots

can be normally found.

RQ2: Do active hotspots tend to be long lasting—remaining
active over a system’s evolution—or are they transient? Since

a given time period of evolution usually contains multiple

hotspots it is possible that some hotspots are more long-lasting

than others. Active hotspots that persist over a long period of

time are change-prone by definition and should be a focal

point of interest as these are potential architecture debts. If

most projects have such long-lasting hotspots, this implies that

architecture debts are ubiquitous. In this case it is important

not only to track these change-prone file sets, but also to reveal

their architectural relations and how changes/bugs propagate.

RQ3: Are the sizes of hotspots correlated with the sizes
of projects? Research [20] has shown that the sizes of files

990

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:02:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Subjects and Hotspots

Start Time #File Range #Issues #Windows Min #AH Max #AH Avg #AH #File DominatingAH
/ #File AllAH

LongestHotspotLife
(in months)

Accumulo 2011-10 1087∼1656 1696 80 11 31 20.1 63.4% 66
Ambari 2011-08 518∼4200 4418 216 6 26 15.9 72.2% 74
Avro 2009-04 264∼521 677 29 9 22 16.1 74.5% 68
Calcite 2012-04 1622∼1746 992 45 6 21 12.5 81.7% 46
Camel 2007-03 6483∼16373 6390 315 11 31 19.7 47.8% 115
Cassandra 2009-03 611∼2010 5006 246 2 24 11.2 82% 94
Cxf 2008-04 4229∼6403 3321 162 13 33 20.4 40.7% 92
Derby 2004-08 2828∼2927 2043 98 11 29 19.1 63.7% 133
Hadoop 2009-05 2218∼7060 2407 116 8 29 17.7 60% 67
Hbase 2007-04 671∼1320 6422 317 1 28 13.1 78.1% 61
Kafka 2011-08 140∼1539 1427 67 9 23 15.7 74.8% 47
Kylin 2014-05 668∼1393 1211 56 9 35 18.8 73.6% 40
Mahout 2008-01 1200∼1220 683 30 16 30 23.9 57.3% 83
Maven 2003-09 830∼965 1238 57 6 27 16.8 67.7% 153
OpenJpa 2006-05 1312∼4582 1165 54 10 27 18.0 70.2% 111
Pdfbox 2008-02 585∼1007 1766 84 11 28 19.2 53.1% 77
Pig 2009-03 1527∼1766 1615 76 5 28 14.4 71.5% 91
Spark 2010-03 131∼893 986 45 5 34 22.0 56.8% 41
Tika 2007-03 194∼1040 1172 47 8 28 18.9 60.3% 103
Wicket 2004-09 2174∼2954 3196 150 10 38 19.6 30.6% 77
Zookeeper 2008-05 354∼474 721 32 10 23 13.9 74.7% 99

Min 677 29 1 21 11.2 30.6% 40
Max 6422 317 16 38 23.9 82.0% 153
Average 2312 111 8 28.3 17.5 64.5% 82.8

Min/Max/Avg #AH: mininum/maximum/average number of active hotspots among all evolution windows

and projects have strong correlations with several measures

of interest; essentially, bigger projects and bigger files score

worse for almost every measure of productivity and quality

that a project manager cares about. For example, the larger

the project, the more code smells can be found; the larger a

file is, the more likely it is error-prone. Here we would like

to understand if the size of active hotspots is also correlated

with the size of the project. If hotspots are not correlated with

size then we could feel greater confidence that they are truly

measuring debt.

RQ4: If we consider the identification of problematic files as
an information retrieval problem, and we use active hotspots
to detect such problematic files, compared with state-of-the-art
smell detection techniques, do active hotspots provide better
precision and recall? Ideally, a tool should have a balanced

precision and recall, to help a user pinpoint problematic files.

RQ5: If we use active hotspots to detect architecture debts,
compared with state-of-the-art techniques, can they reveal
the existence of architecture problems earlier? Since we are

tracing software evolution by tracking issue interactions, we

hypothesize that active hotspots can reveal architectural prob-

lems earlier in a project’s timeline than existing approaches.

Next we introduce our empirical study of these questions

in each of the subsections.

A. Dominating Hotspots

Table I shows that evolution windows usually contain mul-

tiple hotspots. We want to examine how files are distributed

among these hotspots. Our first observation is that in any

window there usually exist a few hotspots that are dominating,

meaning that they attract the majority of files that were

changed during that time period. Consider hotspots with 5

or more files (which we set as the minimum threshold for a

file group to be considered to have structural impact [21])

as dominating hotspots. We observe that, out of all 2322

windows, only 69 windows in 3 out of 21 projects have no

hotspots of 5 or more files. This means that during most of

these projects’ evolution, there existed dominating hotspots.
Our second observation is that the number of such dominat-

ing hotspots is small. Of all 2322 windows, only 79 of them

have more than 5 dominating hotspots. Camel and Ambari

have 24 (out of 315) and 12 (out of 216) such windows

respectively; all other projects have 6 or fewer. In other

words, in the vast majority of windows studied, the number

of dominating hotspots ranges between 1 and 5.
Our third and most important observation, as shown in

column #Fl DominatingAH/#Fl AllAH of Table I , is that

30.6% to 82% of files in hotspots are captured by dominating

hotspots: on average, about 65% of files are aggregated into

dominating hotspots. Of all 21 projects, only the dominating

hotspots in Camel, Cxf and Wicket have fewer than 50% of

all hotspot files (48%, 41% and 31% respectively) on average.

The implication is that, during most of the evolution period,

files in hotspots tend to aggregate into a few instances of

dominating hotspots.
As an example, Figure 4 shows the hotspot statistics in

Zookeeper from 2009 to 2017. The purple line shows the

number of dominating hotspots in each window. The blue line

shows the file count within them, and the red line shows the

total file count of all hotspots. The figure shows that at each

evolution window, there are at most 5 dominating hotspots,

which, on average, captured 75% of all hotspot files; the red

line and the blue lines are very close to each other.
Now we are ready to answer RQ1: indeed, during most

991

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:02:14 UTC from IEEE Xplore. Restrictions apply.

evolution periods there usually exist just a handful of big

hotspots, which can be called dominating hotspots, that link

the majority of active files together. These dominating hotspots

should be the focal points for analysis.
0

10
20

30
40

50
60

Sliding Window

Si
ze

May 2009 Nov 2010 Jun 2012 Oct 2013 Mar 2015 Sep 2016

#HotspotFiles
Plus5HotspotFiles
#Plus5Hotspot

Fig. 4: Zookeeper Hotspot Statistics

B. Persistent Hotspots

Now that we have discovered that at any period of evolution

there are just a few dominating hotspots we would like to

examine if these dominating hotspots tend to be persistent

and long-lasting. If the answer is yes, it mean that these files,

especially the seed files, must be change-prone and/or error-

prone, and thus have incurred the most maintenance costs.

01 13 39 153

Fig. 5: Dominating Hotspot’s Life in Months

We studied 560 dominating hotspots covering all 21

projects. The boxplot in Figure 5 shows that their lifespan

ranges from 0 months to 153 months, with an average 24.6

months and a median 13.0 months. As shown in the last

column of Table I, the most persistent hotspot within each

project lasts between 40 (Kylin) to 153 months (Maven), and

the average is 83 months.

As an example, Figure 6 shows the persistence of

Zookeeper’s dominating hotspots. In this figure, the first

column shows the starting date of an evolution window.

The numbers in the diagonal cell are the total number of

dominating hotspots, and the number in cell(i, j) (i > j)

refers to the number of hotspots that existed in earlier window

j and remain in the current evolution window i. For example,

cell(4, 4) shows that there are 3 hotspots in window 4: 2014-

04-16. Cell(14, 1) shows that there are 2 hotspots that last

from window 1: 2013-09-18 to window 14: 2017-08-10.

Now we are ready to answer RQ2: dominating hotspots can

last a long time; they are persistent and long-living which,

again, shows that they should be the focal points of analysis.

Fig. 6: Zookeeper Dominating Hotspot Persistence

C. Correlation with Project Size

Given these results, we now hypothesize that hotspots can

be used to detect problematic files and architecture problems

during evolution. Prior research [20] has shown that the sizes

of files and projects have strong correlations with several

measures of interest. Essentially, bigger projects and bigger

files score worse for almost every measure of productivity

and quality that a project manager cares about: the larger the

project, the more code smells can be found; the larger a file

is, the more likely it is error-prone.

Here we investigate whether the number of files involved in

hotspots is also correlated with project size. If the answer is

yes, then it is possible that hotspots are not very different from

other analysis techniques; if the answer is no, it means hotspots

are independent and even when a project grows the develop-

ment team won’t be overwhelmed with increasing numbers

of reported flaws. To assess this hypothesis, we compared the

numbers of distinct problematic files reported by hotspots and

by other tools, and calculated their correlations with project

sizes, in terms of file counts and lines of code(LoC).

As an example, Table II shows the number of files reported

as having code/design problems detected by all 6 tools from

tika 0.5 to tika 1.19. The data reveal that, except for hotspots,

when the Tika project increased from 194 files to 1040 files,

the number of reported files by all these tools monotonically

increased. For example, files with smells detected by Designite

increased from 176 to 654 (91% to 63% of the project files).

By contrast, the hotspot approach is the only one in which the

file counts are not correlated with project sizes.

Since Structure101, SonarGraph and SonarQube require

successful builds of a project (by Maven or Gradle) as input,

Tika is the only project where we could build a series of

snapshots from its source code in its Git repository. As a

result, to test if this observation is generalizable, for other

projects we only compared the number of files with problems

reported by Designite and DV8 with Hotspots because these

tools only require source code as input. Using 123 snapshots

from our subjects, we first did a Shaprio-Wilk normality test

to see if the samples reported by these tools follow a normal

992

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:02:14 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Smells Detected in Tika

Version #File Designite #File DV8 #File SonarQube #File SonarGraph #File Structure101 #File Hotspot #File Proj LoC Proj

tika-0.5 176 102 94 9 110 34 194 26160

tika-1.7 371 227 224 42 335 40 552 97143

tika-1.10 465 308 318 62 573 73 739 122868

tika-1.14-rc1 519 389 353 74 646 84 835 138167

tika-1.16 599 399 420 80 757 54 975 163515

tika-1.19 654 453 464 87 837 52 1040 178078

TABLE III: Shapiro-Wilk Normality Test

#File in
Designite

#File in
DV8

#File in
Hotspot

Proj
#File Loc

W 0.87 0.88 0.87 0.77 0.83

P-Value 8.4E-09 2.3E-08 5.9E-09 1.9E-12 9.7E-11

TABLE IV: Pearson Correlation

#File Designite | #File DV8 | #File Hotspot |
#File P LoC P #File P LoC P #File P LoC P

Coefficient 0.80 0.83 0.83 0.85 -0.21 -0.10

P-Value 2.2E-16 2.2E-16 2.2E-16 2.2E-16 0.02 0.27

distribution, which is confirmed as shown in Table III. Then

we did a Pearson correlation test between the reported file

counts, the total file counts, and total lines of code in each

snapshot. Table IV shows that files with smells detected by

Designite are highly correlated with project file counts and

lines of code with a coefficient 0.80 and 0.83. DV8 produces

similar results. Only the number of files captured by Hotspots
are not correlated with size, with Pearson coefficients of −0.21
and −0.10.

Now we are ready to answer RQ3: the number of files that

should be the focal points of analysis is solely related to the

intensity of issue interactions and the architectural relations

among files, and not to project or file sizes.

D. Capturing Bug/Change-Prone Files

TABLE V: Predicting Change-Prone and Bug-Prone files

Change2 Change3
Precision Recall F1 Precision Recall F1

Designite 3.1% 49.2% 5.9% 1.8% 56.4% 3.4%

Sonarqube 7.5% 52.8% 13.1% 4.0% 59.8% 7.5%

Sonargraph 9.9% 29.0% 14.7% 6.0% 33.6% 10.2%

Structure101 12.6% 9.5% 10.8% 12.1% 17.4% 14.3%

DV8 5.7% 49.7% 10.3% 2.9% 55.6% 5.6%

Hotspot 23.2% 21.7% 22.4% 13.7% 27.8% 18.4%

Bug2 Bug3
Precision Recall F1 Precision Recall F1

Designite 5.1% 61.1% 9.3% 3.7% 66.4% 6.9%

Sonarqube 11.6% 61.9% 19.5% 9.0% 74.6% 16.1%

Sonargraph 13.1% 34.7% 19.0% 11.7% 38.0% 17.9%

Structure101 18.8% 13.3% 15.6% 19.3% 16.6% 17.8%

DV8 9.3% 59.4% 16.1% 6.9% 74.0% 12.7%

Hotspot 44.1% 30.4% 36.0% 38.6% 39.2% 38.9%

Files in hotspots, by definition, are change-prone and/or

error-prone since they are constructed by seed files and propa-

gation files that changed together with them. For this reason we

hypothesize that hotspots could be leveraged for change/bug

prediction. Here we compare hotspots and files with smells

reported by other tools in a given snapshot, in terms of their

ability to capture bug-prone and change-prone files in the next

snapshot.

To investigate this question, we chose 15 out of the 21

projects from which we could successfully create a build

for a release so that we could compare all 6 tools including

SonarQube, SonarGraph and Structure101. For each of the 15

projects, we chose a release in 2018 so that we could use the

most recent evolution period as an “oracle”. Since hotspots

and DV8 both require revision history as input, we used the

revision log that includes 100 bugs before the selected releases

for both tools, to make a fair comparison.

To form an oracle data set for error-proneness and change-

prone prediction, we included 100 bug-fixes and 100 general

fixes after the selected release date. All the files that had

been modified by 2 or more bug-fixes form a Bug2 file set;

Similarly, all the files that had been modified by 2 or more

general fixes (both bug and non-bug fixes) form a Change2 file

set. Bug3 (including files modified by 3 or more bug-fixes) is

a subset of Bug2, Change3 is a subset of Change2, so on and

so forth.

Table V shows the results for all 6 tools. We excluded

Change1 and Bug1 since files belonging to Change 1 but not

Change2 (i.e., files that are only changed once) should not be

counted as change-prone or error-prone. The table shows that

hotspots and Structure101 have relatively low recall and high

precision because they reported smaller numbers of files. The

other 4 tools have high recall at the expense of low precision

because they report a large number of files. The F1-score

provides a more balanced measure: the grey cells indicate

that hotspots always have the best F1-score. Take Bug2 for

example: on average, 44.1% of all the files in dominating

hotspots have bugs at least two times in the next evolution

period, and they cover about 30.4% of all the error-prone files.

Besides, though other tools report a large number of prob-

lematic files, hotspots detected 11 files which can not be

detected by other tools. We manually inspected these files’

source code and their relations with other files and identified

these files as flawed files. And these files continuously incur

bugs or changes after the selected releases.

These data illuminate RQ4: compared with other tools,

hotspots can capture error-prone and change-prone files more

effectively, and thus have the potential to be used for

bug/change prediction and localization. Since dominating

hotspots—a big directed graph with propagation relations—

are the majority of hotspot files, it means that these files

contributed significantly to error and change-proneness, which

we propose is through their propagation patterns.

E. Early Detection of Architectural Problems

993

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:02:14 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Hotspot can Reveal Architecture Flaw Early

Detected in
DV8

Detected
in Earlier
Hotspot

Average Months
Advanced Detected
in Hotspot

Unstable Interface 128 111 (86.7%) 25

Crossing 264 210 (79.5%) 18

Our main objective, by focusing on dominating hotspots,

is to detect architectural problems early so that they can be

prevented from growing too big or too complex. We would like

to examine if hotspots can reveal severe architectural problems

earlier, compared with other architectural debt detection tools.

This comparison is challenging. Consider dependency cy-

cles, which are checked by most tools, as an example. Even

though an active cycle can be observed immediately if we

extract changed files’ relations during one fix, we cannot com-

pare it with the cycles detected by other tools systematically

because the members of a cycle change over time and it is

impossible to uniquely trace a cycle especially when different

tools define cycles slightly differently. Similarly, for Fat files,

God classes, etc., it is intuitive that if a file is repeatedly

changed then it may be a hotspot and may become overly

complex. To check how early these problems can be detected,

we would need to create multiple builds to run Sonarqube,

Structure101, etc., which is not practical.

Since hotspots focus on files repeatedly changed by multiple

issues, we wanted to investigate if and to what extent these

files were architecturally important. The earlier such files can

be identified, the more likely their problems can be promptly

detected and fixed. Among the 6 types of anti-patterns reported

by DV8, two of them also detect files with architectural

consequences and contribute most of the maintenance cost.

One is Unstable Interface—a file that has many dependents

and co-changed with them often, and the other is Crossing—a

file with high fan-in and fan-out that co-changes frequently

with both its dependents and the files it depends on. Since

both anti-patterns detect architecturally important files and

their impact scope, we examine if hotspots can identify these

key files early.

To conduct this experiment, we first detected unstable

interfaces and crossings from a series of snapshots in a project,

and noted the snapshot time when they were first detected. We

then scanned our hotspots starting from the first snapshot’s

release time to the last snapshot’s release time to examine: 1)

whether the unstable interface and crossing files identified in

DV8 can be found in a hotspot; 2) if and how much earlier

these files can be detected than when they are first detected

by DV8.

The results are as follows: DV8 detected 128 unstable

interfaces and 264 crossing files from all the projects. Of

these files, 111 out of 128 unstable interfaces are detected

within hotspots, and 210 out of 264 crossing files are detected

within hotspots. We manually examined the 71 files which we

did not find in our hotspots and found that 49 of these files

are in the Hadoop project, which is an ecosystem and use

different issue ids (such as HDFS-[0-9]+ or YARN-[0-9]+) to

mark commits in other modules. In our experiment we used

HADOOP-[0-9]+ to extract issues. These 49 files can be found

in our hotspots if we modify our issue id system. The other

22 files are neither seed files nor files connecting to seed files,

and can not be detected within hotspots. These 22 files are

all structurally connected to other files, but their co-changes

are not captured by multiple issue fixes. Thus we know that

94.4%((111 + 210 + 49)/(128 + 264)) of these key files can

be identified through hotspots.

Of these files that are captured by hotspots, they are all

detected earlier than by DV8, as shown in Table VI. On

average, hotspots can detect unstable interfaces and crossings

25 months and 18 months earlier respectively.

Using Figure 2 as an example. f1 and f6 signal the most

severe architectural problem: many files depend on them, and

they change together frequently with many other files; this is a

typical unstable interface flaw [22]. Out of the 315 evolution

windows examined, these two files are part of a hotspot 257

and 121 times respectively. Our tool detected these two files

in hotspots during the first window. DV8, by contrast, will not

flag them as problematic until enough revision history has been

accumulated to indicate that other files are regularly changing

together with f1 and f6. These problems could easily go

unnoticed until they incur severe costs. Actually, given the

default settings of DV8, using the same revision history as

hotspots, DV8 wouldn’t have reported them at all, unless we

changed the settings, or provided longer revision history.

As another example—a hotspot found in window 70 (2010-

06-17) in Derby—the file Connection.java has 4 fan-outs and

2 fan-ins, but it is not until this grows to 7 fan-ins and 5 fan-

outs (in version 10.7.1.1 2010-12-14) that DV8 reported it as

a Crossing since its default setting are 4 fan-ins and 4 fan-

outs. Using hotspots, the user does not need to consider how

to change the tool settings. Instead, they just need to select

evolution periods of interest, such as a sprint, a release, or the

time after refactoring.

This then answers RQ5: by closely monitoring software

evolution through issues, it is possible to identify architectural

problems earlier in the lifecycle.

VI. DISCUSSION

Hotspots and Architectural Anti-patterns. In section

V-E, we prove that hotspots can detect architectural important

files: unstable interface and crossing earlier than DV8. The ra-

tional behind this is that hotspots are constructed through issue

interactions (e.g. files addressing two issues are overlapped),

which shows early sign of architecture problems. If two issues

are addressing different problems, then the shared files violate

the single responsibility principle. If two issues are addressing

the same problems, then the design of shared files also deserve

further investigations. In addition, hotspots also incorporate

a small architecture unit which shows changes propagate

among multiple files in a real system. These propagation

patterns and their combinations can indicate architecture flaws.

For example, we observed that the last file in one domino

instance is also the first file of another domino instance and,

994

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:02:14 UTC from IEEE Xplore. Restrictions apply.

though these two domino chains, changes propagate not only

among multiple files, but also across multiple packages/sub-

systems. If the chain is long and files in this chain are in

different packages, files may be forgotten during bug fixing.

And this is similar to an anti-pattern “Message Chain” [23]

defined by Fowler et al. We also have similar observation

with other patterns and their combinations. So we can say

each propagation pattern is an atomic relation forming higher

level and more severe architecture problems. Combining issue

interactions with these propagation patterns, hotspots can rep-

resent the most active architectural unit and indicate possible

architectural problems to avoid further architectural decay.

Next we discuss the limitations of our proposed models and

the threats to validity of our study.

Limitations. First the accuracy of our study depends on the

quality of project revision histories. Recent studies [24], [25]

state that it is possible for one commit to fix multiple issues,

or, for a commit to not be explicitly linked to an issue. Our

analyses assume that files fixing an issue are related to each

other, though we do remove issues which modified more than

10 source files, to reduce noise. We intend to further assess

this threat via qualitative analysis.

Second, our definition of active hotspot uses seed files and

includes files with propagation relations with them. There may

exist more effective ways to find more precise hotspot, e.g.

at method-level instead of file-level. Improving and further

evaluating the hotspot detection algorithm is future work.

Finally, the activeness of a system will significantly influ-

ence the detected hotspots. Consider Avro: this system has not

been very active in recent years. As a result, few hotfiles can

be found and the detected hotspots are small. It is possible that

there are many files in the system still have code, design, or

architecture problems. However, if the system remains to be

inactive, these problems may not generate extra maintenance

costs, and hence shouldn’t be counted as technical debts.

Investigating how to assess the activeness of a project, and

how the activeness influences our models, are parts of our

future work.

Threats to Validity. One major threat to validity of our

empirical study is the choice of using 100 issues as the unit of

evolution window. It is not clear if the results will differ if we

chose a different length, or how to optimally choose the length

of an evolution window. Conducting sensibility analysis on the

sizes of evolution windows is our future work. In practice, an

evolution window could be a sprint, a release, a period after

refactoring, etc.

Another threat to validity is choosing 5 files as the threshold

of being a dominating hotspot. We will also test the sensibility

of this threshold in the future. Similar to the choice of 100

issues as the unit of evolution windows, in practice, the

existence of dominating hotspots will be prominent, and there

is no need to set such a threshold.

An external validity is that we only studied 21 open source

projects, all of which were implemented in Java and all of

which are from the Apache ecosystem. While we have no

reason to assume that the effects that we have studied would

be different with different programming languages, we can

not currently claim that our results can be generalized to

projects implemented using other languages. Similarly we

have no expectation that our results would differ in closed-

source contexts, or projects from other OSS ecosystems, but

this remains a potential threat.

VII. RELATED WORK

Software evolution. Chapin et al. [26] proposed a method to

classify evolution types based on a semi-hierarchical manner

of the change in four aspects from documentation to function-

ality. Godfrey et al. [27] compared software evolution with

biological evolution, and examined how software evolves in

response to environmental pressure and emergent design. Tu et

al. [28] studied the evolution of the Linux kernel and discussed

why Linux continues to exhibit such strong growth. Robles at

al. [29] studied the evolution of a Linux distribution, Debian,

with respect to its overall size, use of programming languages,

maintenance of packages, and file sizes over seven years.

Architecture evolution has also been explored [30]–[32].

Chaikalis et al. [30] incorporated structural and domain in-

formation, such as the creation of relations among existing

and new classes and the removal of edges, into a network-

based prediction model. They used 10 open-source projects

to evaluate this model and showed that their derived models

can provide insight into future trends. Zimmermann [31]

examines architectural refactoring as an evolution technique

that revisits decisions and identifies related design, imple-

mentation, and documentation tasks. Xiao et al. [32] also

studied the evolution of architectural debt and showed how

such debts grow. The above studies on software evolution

focus on the evolution of software architecture, knowledge

bases, and so forth. Our study is complementary to these

studies, by investigating software evolution through one of the

smallest architectural unit:active hotspot and studying active
hotspot’s evolution continuously by sliding issue’s winodws

instead of focusing on separate releases.

Architecture problem identification. The following work is

the state-of-art in terms of identifying architectural problems

underlying high-maintenance. Xiao et al. [32], [33] revealed

that most error-prone files often connected into just a few file

groups, and proposed 4 types of architectural debts. Mo et

al. [22] proposed five file-level architectural flaws and proved

that these flaws are highly correlated with error-proneness

and change-proneness. Mondal et al. [34] investigated bug

propagation through code clones and conclude that up to 33%

of code clones in a bug fix can be related to bug propagation.

Our study identifies three other common ways for a bug to

propagate, and use them to construct active hotspot.
Different from this prior work, our approach is the first

attempt to monitoring software evolution by tracking how

issues interact. The concept of active hotspot takes into

consideration the temporal natural of architecture connections,

and, as we will explain later, enables more precise and timely

identification of architecture problem that may grow into

995

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:02:14 UTC from IEEE Xplore. Restrictions apply.

severe debts. Hence designers can treat these problems early

before incurring significant loss.

Change Propagation As defined in [35], to guarantee the

proper funtionality of a software system, when a particular

entity is changed, it is required to change other entities of

the software system. Researchers [35]–[37] have constructed

a change propagation model from historical co-change, code

structure, name similarity, etc., and measure the model’s preci-

sion and recall. Furthermore, researchers have been analyzing

more fine-grained change impact [38], [39]. For instance,

Chianti first decomposes differences between two programs

into atomic changes such as Changed Methods(CM) and

Added Field (AF) [38]. Wang et al. [39] did an empirical study

of multi-entity changes in real bug fixes and they discovered

six recurring patterns. Similar to their techniques, we also

studied propagation patterns. However, to construct one of the

smallest architectural unit at the file level, we studied files’

propagation patterns. We discovered 4 recurring propagation

patterns at the file level and files involves these patterns tend

to propagate changes to other files.

Code Smells/Anti-patterns. Numerous studies [40]–[45]

claimed that code smells and anti-patterns are the causes of

significant maintenance costs. Many tools [46]–[54] have been

developed to reveal code smells and anti-patterns. However,

recent studies [20], [55] suggest that code smells, which

indicate bad design, are not the root causes of maintenance

costs. Instead, file size and the number of revisions are more

strongly correlated with maintenance costs. Using popular

code smell detection tools, developers can detect numerous

code smells, but not all of them are real issues or incur

high maintenance costs. Our study focuses on bug propagation

patterns that have already shown they incur high maintenance

costs. Using these an analyst can focus on the true maintenance

difficulty in a project, and pinpoint the underlying design

problems at the finest granularity. As discussed in V-D, we

compared our active hotspot with 5 other state-of-the-art smell

detection tools and proved active hotspot can use less files to

capture more maintenance files in the future.

VIII. CONCLUSION

In this paper, we proposed a model called active hotspots
that can be used to monitor software evolution and detect

potential degradation, using issues as first-class entities. An

active hotspot is formed by seed files that are changed by

multiple issues, and the files that are connected with them

through one of the 4 propagation patterns. Using active

hotspots as lenses, we studied the evolution history of 21 open

source projects. The data revealed that within any evolution

period, the majority of files revised for issue fixing are just

aggregated into a few dominating hotspots, and most of these

dominating hotspots are persistent and remain active for a long

time, implying that these dominating hotspots should be the

focal points of activity and deserve special attention.

Different from most code, design, or architecture smell

detection tools, the number of files within hotpots do not

increase with the size of the project, meaning that developers

won’t be overwhelmed by increasing numbers of reported

flaws as the project grows. We also showed that hotspots have

the potential to be leveraged for bug and change localization.

Most importantly, by monitoring the emergence and evolution

of hotspots, it is possible to detect architectural problems

early so that these problems won’t accumulate into severe

maintenance costs.

REFERENCES

[1] M. Feathers, Working effectively with legacy code. Prentice Hall
Professional, 2004.

[2] J. Kerievsky, Refactoring to Patterns. Addison-Wesley, 2004.
[3] J. Carriere, R. Kazman, and I. Ozkaya, “A cost-benefit framework

for making architectural decisions in a business context,” in Software
Engineering, 2010 ACM/IEEE 32nd International Conference on, vol. 2.
IEEE, 2010, pp. 149–157.

[4] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the principal of an
application’s technical debt,” IEEE Software, vol. 29, no. 6, pp. 34–42,
2012.

[5] ——, “Estimating the principal of an application’s technical debt,” IEEE
software, vol. 29, no. 6, pp. 34–42, 2012.

[6] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou,
P. Abrahamsson, A. Martini, U. Zdun, and K. Systa, “The perception
of technical debt in the embedded systems domain: An industrial case
study,” in Managing Technical Debt (MTD), 2016 IEEE 8th International
Workshop on. IEEE, 2016, pp. 9–16.

[7] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman,
“Are developers aware of the architectural impact of their changes?”
in Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering. IEEE Press, 2017, pp. 95–105.

[8] W. Cunningham, “The WyCash portfolio management system,” in Ad-
dendum to Proc. 7th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Oct. 1992, pp.
29–30.

[9] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyevy, V. Fedaky,
and A. Shapochkay, “A case study in locating the architectural roots
of technical debt,” in Proc. 37th International Conference on Software
Engineering, 2015.

[10] A. Martini and J. Bosch, “On the interest of architectural technical debt:
Uncovering the contagious debt phenomenon,” Journal of Software:
Evolution and Process, vol. 29, no. 10, p. e1877, 2017.

[11] S. SonarSource, “Sonarqube,” Capturado em: http://www. sonarqube.
org, 2013.

[12] “Structure101.” [Online]. Available: https://structure101.com/
[13] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Architecture anti-

patterns: Automatically detectable violations of design principles,” IEEE
Transactions on Software Engineering, 2019.

[14] R. Mo, W. Snipes, Y. Cai, S. Ramaswamy, R. Kazman, and M. Naedele,
“Experiences applying automated architecture analysis tool suites,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ACM, 2018, pp. 779–789.

[15] M. DAmbros, H. Gall, M. Lanza, and M. Pinzger, “Analysing software
repositories to understand software evolution,” in Software evolution.
Springer, 2008, pp. 37–67.

[16] R. C. Martin, “The single responsibility principle,” The principles,
patterns, and practices of Agile Software Development, vol. 149, p. 154,
2002.

[17] “Understand.” [Online]. Available: https://scitools.com/
[18] “Simian.” [Online]. Available: https://www.harukizaemon.com/simian/
[19] Q. Feng, Y. Cai, R. Kazman, and R. Mo, “The birth, growth, death and

rejuvenation of software maintenance communities,” in Proceedings of
the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 2018, p. 5.

[20] D. I. Sjøberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dybå,
“Quantifying the effect of code smells on maintenance effort,” IEEE
Transactions on Software Engineering, vol. 39, no. 8, pp. 1144–1156,
2013.

[21] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Decoupling level:
a new metric for architectural maintenance complexity,” in Proceedings
of the 38th International Conference on Software Engineering. ACM,
2016, pp. 499–510.

996

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:02:14 UTC from IEEE Xplore. Restrictions apply.

[22] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The formal
definition and automatic detection of architecture smells,” in Proc. 15th
Working IEEE/IFIP International Conference on Software Architecture,
May 2015.

[23] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Jul. 1999.

[24] K. Herzig and A. Zeller, “The impact of tangled code changes,” in Min-
ing Software Repositories (MSR), 2013 10th IEEE Working Conference
on. IEEE, 2013, pp. 121–130.

[25] M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri, “Helping developers
help themselves: Automatic decomposition of code review change-
sets,” in Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 2015, pp. 134–144.

[26] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W.-G. Tan, “Types
of software evolution and software maintenance,” Journal of Software:
Evolution and Process, vol. 13, no. 1, pp. 3–30, 2001.

[27] M. W. Godfrey and D. M. German, “The past, present, and future of
software evolution,” in Frontiers of Software Maintenance, 2008. FoSM
2008. IEEE, 2008, pp. 129–138.

[28] M. W. Godfrey and Q. Tu, “Evolution in open source software: A
case study,” in Software Maintenance, 2000. Proceedings. International
Conference on. IEEE, 2000, pp. 131–142.

[29] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr, and J. J. Amor,
“Mining large software compilations over time: another perspective of
software evolution,” in Proceedings of the 2006 international workshop
on Mining software repositories. ACM, 2006, pp. 3–9.

[30] T. Chaikalis and A. Chatzigeorgiou, “Forecasting java software evolution
trends employing network models,” IEEE Transactions on Software
Engineering, vol. 41, no. 6, pp. 582–602, 2015.

[31] O. Zimmermann, “Architectural refactoring: A task-centric view on
software evolution,” IEEE Software, vol. 32, no. 2, pp. 26–29, 2015.

[32] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and
quantifying architectural debt,” in Proc. 38th International Conference
on Software Engineering, 2016.

[33] L. Xiao, Y. Cai, and R. Kazman, “Design rule spaces: A new form of ar-
chitecture insight,” in Proceedings of the 36th International Conference
on Software Engineering. ACM, 2014, pp. 967–977.

[34] M. Mondal, C. K. Roy, and K. A. Schneider, “Bug propagation through
code cloning: An empirical study,” in Software Maintenance and Evo-
lution (ICSME), 2017 IEEE International Conference on. IEEE, 2017,
pp. 227–237.

[35] A. E. Hassan and R. C. Holt, “Predicting change propagation in software
systems,” in Proc. 20th IEEE International Conference on Software
Maintenance, Sep. 2004, pp. 284–293.

[36] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE Transactions on
Software Engineering, vol. 31, no. 6, pp. 429–445, 2005.

[37] H. Kagdi, J. I. Maletic, and B. Sharif, “Mining software repositories for
traceability links,” in 15th IEEE International Conference on Program
Comprehension (ICPC’07). IEEE, 2007, pp. 145–154.

[38] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: a tool
for change impact analysis of java programs,” in ACM Sigplan Notices,
vol. 39, no. 10. ACM, 2004, pp. 432–448.

[39] Y. Wang, N. Meng, and H. Zhong, “An empirical study of multi-entity
changes in real bug fixes,” in 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2018, pp. 287–
298.

[40] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” Ieee software, vol. 29, no. 6, pp. 18–21, 2012.

[41] D. Siewiorek and R. Swarz, Reliable Computer Systems: Design and
Evaluatuion. Digital Press, 2017.

[42] I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis, and M. Shep-
perd, “A controlled experiment investigation of an object-oriented design
heuristic for maintainability,” Journal of Systems and Software, vol. 72,
no. 2, pp. 129–143, 2004.

[43] A. Lozano and M. Wermelinger, “Assessing the effect of clones on
changeability,” in Software Maintenance, 2008. ICSM 2008. IEEE In-
ternational Conference on. IEEE, 2008, pp. 227–236.

[44] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code, on
program comprehension,” in Software maintenance and reengineering
(CSMR), 2011 15th European conference on. IEEE, 2011, pp. 181–
190.

[45] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory study
of the impact of code smells on software change-proneness,” in Reverse
Engineering, 2009. WCRE’09. 16th Working Conference on. IEEE,
2009, pp. 75–84.

[46] I. M. Bertran, “Detecting architecturally-relevant code smells in evolving
software systems,” in Proceedings of the 33rd International Conference
on Software Engineering. ACM, 2011, pp. 1090–1093.

[47] R. M. de Mello, R. F. Oliveira, and A. F. Garcia, “On the influence
of human factors for identifying code smells: A multi-trial empirical
study,” in Empirical Software Engineering and Measurement (ESEM),
2017 ACM/IEEE International Symposium on. IEEE, 2017, pp. 68–77.

[48] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh, and S. B. Chikha,
“Competitive coevolutionary code-smells detection,” in International
Symposium on Search Based Software Engineering. Springer, 2013,
pp. 50–65.

[49] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” in Software Maintenance, 2004. Proceedings. 20th IEEE
International Conference on. IEEE, 2004, pp. 350–359.

[50] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2010.

[51] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using change his-
tory information,” in Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering. IEEE Press, 2013,
pp. 268–278.

[52] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad,” in
Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International
Conference on, vol. 1. IEEE, 2015, pp. 403–414.

[53] A. Koenig, “Patterns and antipatterns,” The patterns handbook: tech-
niques, strategies, and applications, vol. 13, p. 383, 1998.

[54] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change-and
fault-proneness,” Empirical Software Engineering, vol. 17, no. 3, pp.
243–275, 2012.

[55] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell
relations on software maintainability: An empirical study,” in Software
Engineering (ICSE), 2013 35th International Conference on. IEEE,
2013, pp. 682–691.

997

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:02:14 UTC from IEEE Xplore. Restrictions apply.

